Abstract

A universal anthropomorphic manipulator with six rotational degrees of mobility is considered. The nodal points S0, ..., S6 are selected on the trajectory of movement of the manipulator grip. The kinematic analysis of the manipulator was carried out by the method of transforming the coordinates of Denavit - Hartenberg. The mathematical model of the manipulator is compiled by the Lagrange-Euler method. The problem of maximum performance for each generalized coordinate qi (t) is solved using the Pontryagin maximum principle. Mathematical modeling was carried out in the Mathcad environment. The software method for analyzing the speed of the manipulator allows us to consider for each nodal point of the trajectory S0, ..., S6 the set of admissible configurations of the manipulator, solve the problem of maximum speed for each generalized coordinate qi (t) and estimate the minimum time for the implementation of the sequence of state vectors. When solving the problem of maximum speed, the switching time ti1 and the minimum turning time tik are calculated for each generalized coordinate qi (t). The minimum time for the configuration implementation can be found by summing the minimum rotation time tik over six generalized coordinates. Similar calculations are carried out for each nodal point S0, ..., S6 and the corresponding sets of permissible manipulator configurations. The developed software makes it possible, on the basis of the data obtained, to synthesize a sequence of control commands for the manipulator drives. The research results can be used at the design stage, implementation and modernization of robotic systems and manipulators.

Highlights

  • Разработка универсального манипулятора (УМ) в виде унифицированного модуля позволит расширить область его применения; снизить затраты на производство, обслуживание и ремонт; ускорит процесс внедрения робототехнические комплексы (РТК)

  • The nodal points S0, ..., S6 are selected on the trajectory of movement of the manipulator grip

  • The mathematical model of the manipulator is compiled by the Lagrange-Euler method

Read more

Summary

DOI RECEIVED ACCEPTED PUBLISHED

ПРОГРАММНЫЙ МЕТОД АНАЛИЗА БЫСТРОДЕЙСТВИЯ АНТРОПОМОРФНОГО МАНИПУЛЯТОРА Ащепкова Наталья Сергеевна Ashchepkova Natalya. (2021) Software Method for Analysis of the Performance of Anthropomorphic Manipulator. ПРОГРАММНЫЙ МЕТОД АНАЛИЗА БЫСТРОДЕЙСТВИЯ АНТРОПОМОРФНОГО МАНИПУЛЯТОРА Ащепкова Наталья Сергеевна Ashchepkova Natalya. (2021) Software Method for Analysis of the Performance of Anthropomorphic Manipulator.

ПРОГРАММНЫЙ МЕТОД АНАЛИЗА БЫСТРОДЕЙСТВИЯ АНТРОПОМОРФНОГО МАНИПУЛЯТОРА
Кинематический анализ манипулятора проведен методом преобразования координат
Координаты узловых точек

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.