Abstract

Reconfigurable platforms can be very effective for lowering production costs because they allow the reuse of architecture resources across a variety of applications. We show how to program a reduced-instruction-set-computing (RISC) microprocessor with a reconfigurable functional unit, focusing on DSP applications and using the example of a turbodecoder. We have developed a complete design flow, including a methodology and compilation tool chain, to address the instruction set hardware-software codesign problem for a processor with a runtime reconfigurable unit. The flow starts from a system-level specification (usually a software program) of the application and partitions it into software and hardware domains to achieve the best speed, power, and area performance, while satisfying resource constraints imposed by the target platform architecture. We describe a methodology and a set of tools that allow extensive design exploration for hardware-software codesign with the goal of improving the overall utilization of reconfigurable multimedia platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.