Abstract
Edge computing is a bridge for realizing the convergence between physical space and cyber space in the Internet of Things (IoT) paradigm. Large numbers of physical objects produce a huge amount of data that needs to be efficiently processed in the edge side. This situation urgently requires novel ideas and framework in the design and management of edge computing to improve and enhance its performance. In this article, we propose an approach and principle of software-defined edge computing (SDEC) from the perspective of cyber-physical mapping, where the ultimate goal is to achieve a highly automatic and intelligent edge computing system. The SDEC can also help realize flexible management and intelligent collaboration among various edge hardware resources and services by way of software. To this end, we design an SDEC-based open IoT system architecture which decouples upper level IoT applications from the underlying physical edge resources and builds dynamically reconfigurable smart edge services. The software-definition mechanism of the SDEC platform is proposed to introduce the detailed processes that the underlying physical devices are defined in the form of software. We also describe an illustrative application case about smart factory to present the practical effectiveness of the proposed scheme. Finally, we outline several challenges which are worthy of in-depth study and research. The SDEC paradigm can share, reuse, recombine, and reconfigure edge resources and services so that the overall service capability of the edge side can be improved.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have