Abstract
A magnetic skyrmion induced on a ferromagnetic topological insulator (TI) is a real-space manifestation of the chiral spin texture in the momentum space and can be a carrier for information processing by manipulating it in tailored structures. Here, a sandwich structure containing two layers of a self-assembled ferromagnetic septuple-layer TI, Mn(Bi1-xSbx)2Te4 (MnBST), separated by quintuple layers of TI, (Bi1-xSbx)2Te3 (BST), is fabricated and skyrmions are observed through the topological Hall effect in an intrinsic magnetic topological insulator for the first time. The thickness of BST spacer layer is crucial in controlling the coupling between the gapped topological surface states in the two MnBST layers to stabilize the skyrmion formation. The homogeneous, highly ordered arrangement of the Mn atoms in the septuple-layer MnBST leads to a strong exchange interaction therein, which makes the skyrmions "soft magnetic". This would open an avenue toward a topologically robust rewritable magnetic memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.