Abstract

Molecular dynamics-based free energy calculations allow the determination of a variety of thermodynamic quantities from computer simulations of small molecules. Thermodynamic integration (TI) calculations can suffer from instabilities during the creation or annihilation of particles. This "singularity" problem can be addressed with "soft-core" potential functions which keep pairwise interaction energies finite for all configurations and provide smooth free energy curves. "One-step" transformations, in which electrostatic and van der Waals forces are simultaneously modified, can be simpler and less expensive than "two-step" transformations in which these properties are changed in separate calculations. Here, we study solvation free energies for molecules of different hydrophobicity using both models. We provide recommended values for the two parameters α(LJ) and β(C) controlling the behavior of the soft-core Lennard-Jones and Coulomb potentials and compare one- and two-step transformations with regard to their suitability for numerical integration. For many types of transformations, the one-step procedure offers a convenient and accurate approach to free energy estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.