Abstract

On-Chip Variation (OCV) in advanced technology nodes introduces delay uncertainties that may cause timing violations. This problem drastically affects the clock tree that, besides the growing design complexity, needs to be appropriately synthesized to tackle the increased variability effects. To reduce the magnitude of the clock-induced OCV, we incrementally relocate the flip-flops and the clock gaters in a bottom-up manner to implicitly guide the clock tree synthesis engine to produce clock trees with increased common clock tree paths. The relocation of the clock elements is performed using a soft clustering approach that is orthogonal to the clock tree synthesis method used. The clock elements are repeatedly relocated and incrementally re-clustered, thus gradually forming better clusters and settling to more appropriate positions to increase the common paths of the clock tree. This behavior is verified by applying the proposed method in industrial designs, resulting in clock trees which are more resilient to process variations, while exhibiting improved overall timing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.