Abstract

The interfacial electronic structure of C-60/copper phthalocyanine (CuPc)/molybdenum trioxide (MoO3) thin films grown in situ on indium tin oxide (ITO) substrates has been studied using synchrotron radiation-excited photoelectron spectroscopy in an attempt to understand the influence of oxide interlayers on the performance of small molecule organic photovoltaic devices. The MoO3 layer on ITO is found to significantly increase the work function of the substrate and induces large interface dipoles and band bending at the CuPc/MoO3 interface. The large band bending confirms the formation of an internal potential that assists hole extraction from the CuPc layer to the electrode. The electronic structure of the MoO3 layer on ITO was also examined using various soft X-ray spectroscopies to probe the conductive nature of the MoO3 thin film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.