Abstract

Piezoelectric sensors are widely used in wearable devices to mimic the functions of human skin. However, it is considerably challenging to develop soft piezoelectric materials that can exhibit high sensitivity, stretchability, super elasticity, and suitable modulus. In this study, a soft skin-like piezoelectric polymer elastomer composed of poly(vinylidene fluoride) (PVDF) and a novel elastic substrate polyacrylonitrile is prepared by combining the radical polymerization and freeze-drying processes. Dipole-dipole interaction results in the phase transition of PVDF (α phase to β phase), which enhances the electrical and mechanical performances. Thus, we achieve a high piezoelectric coefficient (d33max = 63 pC/N), good stretchability (211.3-259.3%), super compressibility (subjected to 99% compression strain without cracking), and super elasticity (100% recovery after extreme compression) simultaneously for the elastomer. The soft composite elastomer produces excellent electrical signal output (Vocmax = 253 mV) and responds rapidly (15 ms) to stress-induced polarization effects. In addition, the elastomer-based sensor accurately detects various physiological signals such as gestures, throat vibrations, and pulse waves. The developed elastomers exhibit excellent mechanical properties and high sensitivity, which helps facilitate their application as artificial electronic skin to sense subtle external pressure in real time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.