Abstract
This study introduces a novel self-organizing recurrent interval type-2 fuzzy neural network (SRIT2FNN) for the construction of a soft sensor model for a complex chemical process. The proposed SRIT2FNN combines interval type-2 fuzzy logic systems (IT2FLSs) and recurrent neural networks (RNNs) to improve the modeling precision. The Gaussian interval type-2 membership function is used to describe the antecedent part of the SRIT2FNN fuzzy rule, and the consequent part is of the Mamdani type with an interval random number. An adaptive optimal clustering number of fuzzy kernel clustering algorithm based on a Gaussian kernel validity index (GKVI-AOCN-FKCM) is developed to determine the structure of the SRIT2FNN and fuzzy rule antecedent parameters, and the parameter learning of SRIT2FNN used the gradient descent method. Finally, the proposed SRIT2FNN is applied to the soft sensor modeling of ethylene cracking furnace yield in a typical chemical process. Comparisons between the SRIT2FNN and conventional fuzzy neural network (FNN) and interval type-2 fuzzy neural network (IT2FNN) are made via simulation experiments. The results show that the proposed SRIT2FNN performs better than the conventional FNN and IT2FNN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.