Abstract

To address the issue of soft-sensing of effluent total phosphorus in wastewater treatment processes (WWTPs), a soft-sensing system based on an adaptive recursive fuzzy neural network with Gustafson-Kessel (GK) clustering and hierarchical adaptive second-order optimization algorithm (HAS) is proposed in this paper. In GK-ARFNN, first, the GK clustering algorithm was utilized to cluster the input–output dataset. Thus, the establishment of the initial fuzzy rule base and the determination of the parameter value of the fuzzy set membership function was realized. Then, the recursive layer was added into FNN to improve the dynamic mapping ability of the system. Finally, the HAS algorithm was developed based on the improved Levenberg-Marquardt (LM) optimization algorithm, and all the free parameters of the GK-ARFNN were adjusted online using HAS to improve the generalization capability and prediction accuracy of the soft-sensing system. In addition, the convergence of the proposed GK-ARFNN algorithm was also analyzed in this paper, which can ensure the effectiveness of the solutions to modelling issues for practical industrial processes. The simulation results demonstrate that the GK-ARFNN-based soft-sensing system introduced in this paper achieved satisfactory accuracy in the prediction of effluent total phosphorus in WWTPs. The source codes of GK-ARFNN and some competitors can be downloaded from https://github.com/hyitzhb/GK-ARFNN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.