Abstract

We propose a quantum control scheme aimed at interacting systems that gives rise to highly selective coupling among their near-to-resonance constituents. Our protocol implements temporal control of the interaction strength, switching it on and off again adiabatically. This soft temporal modulation significantly suppresses off-resonant contributions in the interactions. Among the applications of our method we show that it allows us to perform an efficient rotating-wave approximation in a wide parameter regime, the elimination of side peaks in quantum sensing experiments, and selective high-fidelity entanglement gates on nuclear spins with close frequencies. We apply our theory to nitrogen-vacancy centers in diamond and demonstrate the possibility for the detection of weak electron-nuclear coupling under the presence of strong perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.