Abstract

Despite their attractive features, integrated optical devices based on Congruent-melted Lithium Niobate (CLN) suffer from Photo-Refractive Damage (PRD). This light-induced refractive-index change hampers the use of CLN when high-power densities are in play, a typical regime in integrated optics. In bulk devices, the resistance to PRD can be largely improved by doping the lithium-niobate substrates with magnesium oxide. However, the fabrication of waveguides on MgO-doped substrates is not as straightforward as on CLN and either the resistance to PRD is strongly reduced by the waveguide fabrication process (as it happens in Ti-indiffused waveguides) or the nonlinear conversion efficiency is lowered (as it occurs in annealed-proton exchange). Here, we fabricate waveguides starting from MgO-doped substrates using the Soft-Proton Exchange (SPE) technique and we show that this combination represents a promising alternative. We demonstrate that, with a small adaptation of the exchange parameters, SPE allows producing MgO-doped LN refractive-index profiles almost identical to those produced in CLN without reducing the nonlinearity in the substrate. We also prove that the SPE does not affect substantially the resistance to PRD characteristics of MgO-doped substrates. Therefore, we think that SPE is the right recipe to outperform standard techniques and to fabricate robust and efficient waveguides for high-intensity-beam confinement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call