Abstract

We use diffuse and inelastic x-ray scattering to study the formation of an incommensurate charge-density-wave (I-CDW) in BaNi_{2}As_{2}, a candidate system for charge-driven electronic nematicity. Intense diffuse scattering is observed around the modulation vector of the I-CDW, Q_{I-CDW}. It is already visible at room temperature and collapses into superstructure reflections in the long-range ordered state where a small orthorhombic distortion occurs. A clear dip in the dispersion of a low-energy transverse optical phonon mode is observed around Q_{I-CDW}. The phonon continuously softens upon cooling, ultimately driving the transition to the I-CDW state. The transverse character of the soft-phonon branch elucidates the complex pattern of the I-CDW satellites observed in the current and earlier studies and settles the debated unidirectional nature of the I-CDW. The phonon instability and its reciprocal space position are well captured by our abinitio calculations. These, however, indicate that neither Fermi surface nesting, nor enhanced momentum-dependent electron-phonon coupling can account for the I-CDW formation, demonstrating its unconventional nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.