Abstract

Being used in optoelectronic devices as ultra-thin conductor-insulator junctions, detailed investigations are needed about how exactly h-BN and graphene hybridize. Here, we present a comprehensive ab initio study of hot carrier dynamics governed by electron-phonon scattering at the h-BN/graphene interface, using graphite (bulk), monolayer and bilayer graphene as benchmark materials. In contrast to monolayer graphene, all multilayer structures possess low-energy optical phonon modes that facilitate carrier thermalization. We find that the h-BN/graphene interface represents an exception with comparatively weak coupling between low-energy optical phonons and electrons. As a consequence, the thermalization bottleneck effect, known from graphene, survives hybridization with h-BN but is substantially reduced in all other bilayer and multilayer cases considered. In addition, we show that the quantum confinement in bilayer graphene does not have a significant influence on the thermalization time compared to graphite and that bilayer graphene can hence serve as a minimal model for the bulk counterpart.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.