Abstract

A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achieved between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.