Abstract

Wearable point-of-care testing devices are essential for personalized and decentralized healthcare. They can collect biofluid samples from the human body and use an analyzer to detect biomolecules. However, creating an integrated system is challenging due to the difficulty of achieving conformality to the human body, regulating the collection and transport of biofluids, developing a biosensor patch capable of precise biomolecule detection, and establishing a simple operation protocol that requires minimal wearer attention. In this study, we propose using a hollow microneedle (HMN) based on soft hollow microfibers and a microneedle-integrated microfluidic biosensor patch (MIMBP) capable of integrated blood sampling and electrochemical biosensing of biomolecules. The soft MIMBP includes a stretchable microfluidic device, a flexible electrochemical biosensor, and a HMN array made from flexible hollow microfibers. The HMNs are fabricated by electroplating flexible and mechanically durable hollow microfibers made from a nanocomposite matrix of polyimide, a poly (vinylidene fluoride-co-trifluoroethylene) copolymer, and single-walled carbon nanotubes. The MIMBP uses the negative pressure generated by a single button push to collect blood and deliver it to a flexible electrochemical biosensor modified with a gold nanostructure and Pt nanoparticles. We have demonstrated that glucose can be accurately measured up to the molar range in whole human blood collected through the microneedle. The MIMBP platform with HMNs has great potential as a foundation for the future development of simple, wearable, self-testing systems for minimally invasive biomolecule detection. This platform capable of sequential blood collection and high sensitivity glucose detection, which are ideal for personalized and decentralized healthcare.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.