Abstract

Viruses have remarkable physical properties and complex interactions with their environment. However, their aggregation in confined spaces remains unexplored, although this phenomenon is of paramount importance for understanding viral infectivity. Using hydrodynamical driving and optical detection, we developed a method to detect the transport of single virus in real time through synthetic nanopores. We unveiled a jamming phenomenon specifically associated with virus confinement under flow. We showed that the interactions of viral particles with themselves and with the pore surface were critical for clog formation. Based on the detailed screening of the physical and chemical determinants, we proposed a simple dynamical model that recapitulated all the experimental observations. Our results pave the way for the study of jamming phenomena in the presence of more complex interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.