Abstract
The dielectric breakdown of ultra-thin 3 nm and 4 nm SiO/sub 2/ layers used as a gate dielectric in poly-Si gate capacitors is investigated. The ultra-thin gate oxide reliability was determined using tunnel current injection stressing measurements. A soft breakdown mechanism is demonstrated for these ultra-thin gate oxide layers. The soft breakdown phenomenon corresponds with an anomalous increase of the stress induced leakage current and the occurrence of fluctuations in the current. The soft breakdown phenomenon is explained by the decrease of the applied power during the stressing for thinner oxides so that thermal effects are avoided during the breakdown of the ultra-thin oxide capacitor. It is proposed that multiple tunnelling via generated electron traps in the ultra-thin gate oxide layer is the physical mechanism of the electron transport after soft breakdown. The statistical distributions of the charge to dielectric breakdown and to soft breakdown for a constant current stress of the ultra-thin oxides are compared. It is shown that for accurate ultra-thin gate oxide reliability measurements it is necessary to take the soft breakdown phenomenon into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.