Abstract

ABSTRACTThe time-dependent dielectric breakdown of MOS capacitors with ultra-thin gate oxide layers is investigated. After the occurrence of soft breakdown, the gate current increases by 3 to 4 orders of magnitudes and behaves like a power law of the applied gate voltage. It is shown that this behavior can be explained by assuming that a percolation path is formed between the electron traps generated in the gate oxide layer during electrical stress of the capacitors. The time dependence of the gate voltage signal after soft breakdown is next analysed. It is shown that the fluctuations in the gate voltage are non-gaussian as well as that long-range correlations exist in the system after soft breakdown. These results can be explained by a dynamic percolation model, taking into account the trapping-detrapping of charges within the percolation cluster formed at soft breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.