Abstract

Starch and proteins are major components in the wheat endosperm that affect its end product quality. Between the two textural classes of wheat i.e. hard and soft, starch granules are loosely bound with the lipids and proteins in soft wheat due to higher expression of interfering grain softness proteins. It might have impact on starch granules properties. In this work for the first time the physiochemical and structural properties of different sized starch granules (A-, B- and C-granules) were studied to understand the differences in starches with respect to soft and hard wheat. A-, B- and C-type granules were separated with >95% purity. Average number and proportion of A-, B-, and C-type granules was 18%, 56%, 26% and 76%, 19%, 5% respectively. All had symmetrical birefringence pattern with varied intensity. All displayed typical A-type crystallites. A-type granules also showed V-type crystallinity that is indicative of starch complexes with lipids and proteins. Granules differing in gelatinization temperature (ΔH) and transition temperature (ΔT), showed different enthalpy changes during heating. Substitution analysis indicated differences in relative substitution pattern of different starch granules. Birefringence, percentage crystallinity, transmittance, gelatinization enthalpy and substitution decreased in order of A>B>C being higher in hard wheat than soft wheat. Amylose content decreased in order of A>B>C being higher in soft wheat than hard wheat. Reconstitution experiment showed that starch properties could be manipulated by changing the composition of starch granules. Addition of A-granules to total starch significantly affected its thermal properties. Effect of A-granule addition was higher than B- and C-granules. Transmittance of the starch granules paste showed that starch granules of hard wheat formed clear paste. These results suggested that in addition to differences in protein concentration, hard and soft wheat lines have differences in starch composition also.

Highlights

  • Wheat is one of the most important cereals for direct human consumption

  • Hard wheat is mainly used for bread making, pasta making while soft wheat is utilized for biscuit and cake making

  • The branching of the glucan chains of amylopectin occurs with regular periodicity [7] and its length and pattern are critical for the proper formation and properties of the starch granule

Read more

Summary

Introduction

Wheat is one of the most important cereals for direct human consumption. Its textural properties determine the end product quality. The branching of the glucan chains of amylopectin occurs with regular periodicity [7] and its length and pattern are critical for the proper formation and properties of the starch granule These two kinds of polymers form amorphous and crystalline regions in starch granules [7] that are responsible for their characteristic birefringence pattern and crystallinity. No study has been reported on the detailed comparison of the molecular structures of the A-, B-, and C-type starch granules from wheat varying in textural properties. In this study we have investigated soft and hard wheat lines for trimodal starch granules distribution, their granular morphology, crystalline structure and thermal properties

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.