Abstract
Elastin polymer sequences derived from muscle exhibit temperature and salt-induced reversible contractions and expansions. A folded and contracted β-turn helical elastin structure is stabilised by increased intramolecular hydrophobic interactions. We have generated a switchable binding protein by inserting a typical elastin turn sequence, GVPGVG, between the two IgG-binding helices of an engineered globular minidomain from Protein A. This mutant showed increased binding of IgG-molecules compared to the wild-type sequence in the presence of sodium sulphate, as measured by surface plasmon resonance spectroscopy. Analysis by circular dichroism revealed a salt-induced folding of the mutant minidomain to a native type I β-turn, likely stabilised as a result of the two interacting dehydrated valines across the β-turn. Since sodium sulphate can be successfully used to regulate the folding/unfolding or binding/dissociation of this minidomain, this suggests an alternative protein purification method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.