Abstract

Sodium perborate (SPB) was used as efficient green catalyst for NaNO2/KHSO4-mediated nitration of aromatic compounds in aqueous acetonitrile medium. Synthesis of nitroaromatic compounds was achieved under both conventional and solvent-free microwave conditions. Reaction times were comparatively shorter in the microwave-assisted than conventional reaction. The reaction kinetics for nitration of phenols in aqueous bisulfate and acetonitrile medium indicated first-order dependence on [Phenol], [NaNO2], and [SPB]. Reaction rates accelerated with introduction of electron-donating groups but retarded with electron-withdrawing groups. Kinetic results did not fit well quantitatively with Hammett’s equation. Observed deviations from linearity were addressed in terms of exalted Hammett’s constants (\( \bar{\sigma } \) or σeff), para resonance interaction energy (ΔΔGp) parameter, and Yukawa–Tsuno parameter (r). This term provides a measure of the extent of resonance stabilization for a reactive structure that builds up charge (positive) in its transition state. The observed negative entropy of activation (−ΔS#) suggests greater solvation and/or cyclic transition state before yielding products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call