Abstract

The reaction kinetics of Prussian blue (PB)/NaNO2 initiated for the nitration of phenols by in aqueous bisulfate and acetonitrile medium indicated first-order dependence on [phenol], [NaNO2], and [PB]. An increase in [KHSO4] accelerated the rate of nitration under otherwise similar conditions. The rate of nitration was faster in the solvent of higher dielectric constant (D). Observed results were in accordance with Amis and Kirkwood plots [log k′ vs. (1/D) and [(D − 1)/(2D + 1)]. These findings together with the linearity of plots, log k′ versus (vol% of acetonitrile (ACN)) and mole fraction of (nx) ACN, probably indicate the importance of both eloctrostatic and nonelctrostatic forces, solvent–solute interactions during nitration of phenols. Reaction rates accelerated with the introduction of electron-donating groups and retarded with electron-withdrawing groups, which are interpreted by Hammett's theory of linear free energy relationship. Hammett's reaction constant (ρ) is a fairly large negative (ρ < 0) value, indicating attack of an electrophile on the aromatic ring. Furthermore, an increase in temperature decreased the reaction constant (ρ) values. This trend was useful in obtaining isokinetic temperature (β) from Exner's plot of ρ versus 1/T. Observed β value (337.8 K) is above the experimental temperature range (303–323 K), indicating that the enthalpy factors are probably more important in controlling the reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call