Abstract
Previous studies indicate that the roots of nonhalophytes showed negative halotropism to salt stress to avoid salt damage. However, halotropism of euhalophytes and their possible reasons are little known. Limonium bicolor, a typical recretohalophyte with multicellular salt glands, was used to study halotropism compared with Arabidopsis thaliana under NaCl, KCl and Na2SO4 stress. The elongation of the roots in L. bicolor was significantly promoted by the appropriate concentrations of NaCl, KCl and Na2SO4, but those of A. thaliana was markedly inhibited. However, isosmotic mannitol with 200 mM NaCl did not affect the root growth of both L. bicolor and A. thaliana. The root activity of both L. bicolor and A. thaliana was enhanced by salts. Compared with K+, Cl–, and SO42−, Na+ played a critical role in halotropism of L. bicolor. Furthermore, the gravitropic setpoint angle of L. bicolor increased under NaCl, KCl and Na2SO4 treatments compared with controls, and the phenomenon was most apparent under NaCl treatments. The endogenous IAA content of the NaCl-treated L. bicolor seedlings was significantly higher than that of the controls. These results suggest that the recretohalophyte L. bicolor has positive halotropism and Na+ plays a pivotal role in L. bicolor’s positive root halotropism by regulating IAA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.