Abstract

Periprosthetic infection is a common reason for surgical revision. Given the increasing resistance of bacteria to antibiotics (e.g., VRE, 4-MRGN) local antiseptic treatment is gaining in importance. However, no standard guideline-based treatment recommendation is yet available. The aim of this study was to investigate the effectiveness of sodium hypochlorite and chlorhexidine against bacterial biofilms. Furthermore, the toxicity of both antiseptics towards human chondrocytes was examined. Human chondrocytes were isolated, cultivated and treated with sodium hypochlorite and chlorhexidine. The viability of cultures was assessed by determination of cell count, XTT and MTT ELISAs, and fluorescent staining with propidium iodide. Bacterial strains of Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa were added to liquid media and incubated overnight. After determination of bacterial concentrations polyethylene (PE) devices were inoculated with bacteria for 48h until biofilms formed. The devices were then washed, treated with antiseptics for 2 and 5min and subsequently spread on agar plates. Sodium hypochlorite is more effective than chlorhexidine in penetrating biofilms of S. aureus, S. epidermidis and P. aeruginosa. Both antiseptics are chondrotoxic, but sodium hypochlorite damages human chondrocytes less than chlorhexidine in vitro. The findings confirm the effectiveness of sodium hypochlorite and chlorhexidine against bacterial biofilms. Both antiseptics can be recommended for the treatment of periprosthetic infections. The toxic effects of sodium hypochlorite and chlorhexidine towards chondrocytes may mean there is a risk of damage to cartilage tissue. Controlled experimental study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.