Abstract
BackgroundIncreasing evidence has demonstrated that microRNAs regulate the development of cartilage and osteogenesis. Whether miR-206 participates in the development of human articular cartilage remains largely unknown. This study aimed to investigate the role of miR-206 in human chondrocytes. MethodsExpression of miR-206 was initially assessed in human osteoarthritis (OA) tissues and articular chondrocytes through quantitative real-time polymerase chain reaction. The effects of miR-206 on proliferation and apoptosis of human chondrocytes were assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double staining assay. Then, the effects of miR-206 on type II collagen alpha 1 (Col2a1), aggrecan, runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase13 (MMP13) were examined with quantitative real-time polymerase chain reaction and Western blot analysis. ResultsMiR-206 was significantly increased in human OA tissues and chondrocytes. MiR-206 significantly inhibited the proliferation of chondrocytes, but promoted apoptosis. Expression of Col2a1 and aggrecan were dramatically decreased, and the expression of RUNX2 and MMP13 were significantly increased when miR-206 was overexpressed. ConclusionsMiR-206 may participate in cartilage degradation in OA. Manipulation of the expression of miR-206 in human chondrocytes may be a novel therapeutic strategy for the treatment of OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.