Abstract
BackgroundOur previous works demonstrated that β2-microglobulin (β2m), a systemic pro-aging factor, induce depressive-like behaviors. Hydrogen sulfide (H2S) is identified as a potential target for treatment of depression. The aim of the present work is to explore whether H2S antagonizes β2m-induced depressive-like behaviors and the underlying mechanisms. MethodsThe depressive-like behaviors were detected using the novelty suppressed feeding test (NSFT), tail suspension test (TST), forced swimming test (FST) and open field test (OFT). The expressions of Warburg-related proteins, including hexokinase II (HK II), pyruvate kinase M2 (PKM2), Lactate dehydrogenase A (LDHA), pyruvate dehydrogenase (PDH) and pyruvate dehydrogenase kinase 1(PDK1), and synaptic plasticity-related proteins, including postsynaptic density protein 95 (PSD95) and synaptophysin1 (SYN1), were determined by western blotting. Resultwe found that NaHS (the donor of H2S) attenuated the depressive-like behaviors in the β2m-exposed rats, as judged by NSFT, TST, FST, and OFT. We also demonstrated that NaHS enhanced the synaptic plasticity, as evidenced by the upregulations of PSD95 and SYN1 expressions in the hippocampus of β2m-exposed rats. Furthermore, NaHS improved the Warburg effect in the hippocampus of β2m-exposed rats, as evidenced by the upregulations of HK II, PKM2, LDHA and PDK1 expressions, and the downregulation of PDH expression. ConclusionH2S prevents β2m-induced depressive-like behaviors, which is involved in improvement of hippocampal synaptic plasticity as a result of enhancement of hippocampal Warburg effect.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have