Abstract
Salmonella is a foodborne pathogen that is one of the main causes of gastroenteric disease in humans and animals. As a natural organic substance, sodium humate (HNa) possesses antibacterial, antidiarrheal, and anti-inflammatory properties. However, it is unclear whether the HNa and HNa-derived microbiota exert alleviative effects on Salmonella enterica serovar Typhimurium-induced enteritis. We found that treatment with HNa disrupted the cell wall of S. Typhimurium and decreased the virulence gene expression. Next, we explored the effect of HNa presupplementation on S. Typhimurium-induced murine enteritis. The results revealed that HNa ameliorated intestinal pathological damage. In addition, we observed that presupplementation with HNa enhanced intestinal barrier function via modulating gut microbiota, downregulating toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) and NOD-like receptor protein 3 (NLRP3) signaling pathways, regulating intestinal mucosal immunity, and enhancing tight junction protein expression. To further validate the effect of HNa-derived microbiota on S. Typhimurium-induced enteritis, we performed fecal microbiota transplantation and found that HNa-derived microbiota also alleviated S. Typhimurium-induced intestinal damage. It is noteworthy that both HNa and HNa-derived microbiota improved the liver injury caused by S. Typhimurium infection. Collectively, this is the first study to confirm that HNa could alleviate S. Typhimurium-induced enteritis in a gut microbiota-dependent manner. This study provides a new perspective on HNa as a potential drug to prevent and treat salmonellosis. IMPORTANCE Salmonella Typhimurium is an important zoonotic pathogen, widely distributed in nature. S. Typhimurium is one of the leading causes of foodborne illnesses worldwide, and more than 350,000 people died from Salmonella infection each year, which poses a substantial risk to public health and causes a considerable economic loss. Here, we found that the S. Typhimurium infection caused severe intestinal and liver damage. In addition, we first found that sodium humate (HNa) and HNa-derived gut microbiota can alleviate S. Typhimurium infection-induced intestinal damage. These findings extend the knowledge about the public health risk and pathogenic mechanisms of S. Typhimurium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.