Abstract
Electrochemical conversion of hypertoxic trivalent arsenic to value-added metallic arsenic can not only contribute to pollution abatement, but also resources reutilization, therefore being widely explored. Electrochemical reduction of trivalent arsenic as a promising way is widely explored. However, the high efficiency conversion is retarded by the sluggish reduction kinetics of AsO33− and fierce evolution of side products of both H2 and toxic AsH3. Herein, by using the sodium citrate as the additive, the current efficiency for metal arsenic production is increased greatly from 60% to 91%, with the accompanied evolution of hypertoxic AsH3 being restrained from 0.15 Nm3/tAs to 0.022 Nm3/tAs, promising a high-efficiency and green process. The electrochemical tests and electrode surface characterizations as well as DFT calculations indicate that the added sodium citrate promotes both the diffusion of reactive AsO33− towards the cathode and its subsequent adsorption on the Ti cathode, contributing to smoother reduction for generating metal arsenic, with the evolution of toxic AsH3 being hindered at the same time. The results can provide new insights for the high-efficiency and greener conversion of hypertoxic trivalent arsenic to value-added metallic arsenic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.