Abstract

Despite the use of many types of chemotherapies for pancreatic cancer, optimal efficacy has not been obtained so far. Pancreatic cancer shows a high incidence of TP53 mutations, inactivating its tumor suppressor activity. In this study, we identified sodium cantharidinate as a novel, potential anti-pancreatic cancer agent that activates p53 function. Sodium cantharidinate reduced the viability of pancreatic cancer cells, including the human primary pancreatic cancer cells, PANC-1, AsPC-1, SW1990 and BXPC-3, in a dose-dependent manner. Sodium cantharidinate induced apoptosis and DNA damage of pancreatic cancer cells. Furthermore, proteome-wide sequencing analysis detected a marked perturbation in p53 signaling pathway on PANC-1 cells upon sodium cantharidinate. Consistent with the previous results, sodium cantharidinate treatment decreased Bcl-2 and mitochondrial cytochrome-c protein expression, as well as phosphorylation of MDM2; meanwhile, it increased the levels of cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP, Bax, and phosphorylated p53, thus inducing the apoptosis of pancreatic cancer cells. The p53-activating effect of sodium cantharidinate was strongly abrogated by treatment with TP53-targeting shRNA. Moreover, sodium cantharidinate inhibited neoplasm growth via the JAK2-STAT3 pathway, which was inhibited by shRNA-TP53 and triggered by combination with gemcitabine. Combination therapy indicated that sodium cantharidinate and gemcitabine synergistically reduced ex vivo and in vivo growth of pancreatic neoplasm. Further docking studies revealed the different binding fates of sodium cantharidinate to activate wild-type p53 function. Thus, sodium cantharidinate could be a potential agent with promising anti-pancreatic cancer efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.