Abstract

Subwavelength optical field confinement and low-loss propagation are of great significance for compact photonic integration. However, the field confinement capability of plasmonic devices is always accompanied by the inherent Ohmic loss. Although recent studies have shown that sodium (Na) exhibits lower loss than noble metals in the near-infrared band, the field confinement ability has not been adequately assessed. Meanwhile, the high chemical reactivity of Na should be regulated for practical application. Two dielectric-coated Na nanowires, consisting of cylindrical Na nanowires with one or two dielectric layers as claddings, are proposed and investigated in this paper. Based on finite element calculations, we thoroughly study the modal fields and low-loss propagation properties of dielectric-coated Na nanowires. The results demonstrate that Na exhibits lower loss and stronger field confinement than the typical plasmonic material silver. These findings indicate the performance of plasmonic devices can be considerably improved by employing the metal Na compared with devices using noble metals, which may promote the applications in subwavelength photonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.