Abstract

In this study, hydrophobic sodium alginate/anthocyanin/cellulose nanocrystal indicator films were fabricated by incorporating nanosilica (NS) as a waterproofing layer. The concentrations and formation methods (spraying (S), coating (C), and impregnation (I)) of the NS layer (denoted as NSS, NSC, NSI, respectively) were optimized. The results indicated that the optimum concentration of the NS layer was 5 % at a water contact angle (WCA) 110.5°. Further, Fourier transform infrared spectra showed the presence of SiOSi and SiCH3 groups in the NSS, NSC, and NSI films, and X-ray diffraction spectra indicated that original structures of these films were disordered. Moreover, the surface morphology, mechanical properties, and light transmission were affected by the NS layer, and the optimal layer was found to be NSI. After 10 days of storage at 100 % humidity, the NSI film exhibited low water vapor adsorption (37.22 g) and permeability (0.1484 g/m·s·Pa·10−11) and a high WCA (110.2°). In addition, the NSI film exhibited a visible color shift with an increasing pH of the buffer solution. A monitoring test of fish freshness showed that the NSI film displayed a distinctive color change corresponding to fish spoilage during 14 days of storage. This indicates that NSI has high potential in indicator film applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call