Abstract

Moist-electric generation, a new energy harvesting technology, exhibits unique advantages in sustainable energy collection and compatibility with environment. However, the lack of research on fiber based moist-electric generation materials and multiscale structure-moist electric performance relationship has restrained the extensive development and application of this energy generation method. In this work, sodium alginate (SA)/multi-walled carbon nanotubes (MWCNT) coaxial fibers with radial gradient difference of oxygen-functional group are prepared through wet spinning. Meanwhile, the aggregate structures of SA/MWCNT fibers are regulated by adjusting the spinning and post-drawing process. The relation between moist electric generation performance and multiscale structure of SA/MWCNT fibers, including the effect of oxygenated group distribution and crystalline structure, are investigated for the clarification of moist-electric mechanism. Based on structure design, the coaxial fiber moist-electric generator (CFMEG) shows excellent moist-electric properties, continuous output ability, and environmental adaptability. The maximum output power density of CFMEG with a length of only 1 cm can reach 3.09 ∼ 9.50 μW/cm2 at RH = 90 ∼ 95% from an extreme voltage of 0.35 ∼ 0.38 V and current of 1.64 ∼ 1.74 μA, which exceeds most of the same type of moist-electric research. A long-last output voltage of 0.15 V for more than 36 h can be obtained from this CFMEG, which is able to generate an output voltage of 1.0 to 6.9 V after series and parallel connection to illuminate LEDs directly without additional capacitors. The CFMEG from multiscale structure design provides a way of preparation of flexible power supply devices using green resource with low density and exhibits great opportunity for common purpose application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call