Abstract
The depolarizing afterpotential (DAP) following an action potential increases the excitability of a neuron. Mechanisms related to the DAP following an antidromic or current-induced spike were studied in CA1 pyramidal cells by whole-cell recordings in hippocampal slices in vitro. In DAP-holding voltage curves, the DAP at 10 ms after the spike peak (DAP10) was extrapolated to reverse at about -50 mV. Increase of extracellular K(+) concentration increased DAP and neuronal bursting. DAP10 reversal potential shifted positively with an increase in [K(+)](o) and with the blockade of K(+) conductance using pipettes filled with Cs(+). Similarly, extracellular tetraethylammonium (TEA; 10 mM), 4-aminopyridine (3-10 mM) increased DAP and shifted the DAP10 reversal potential to a depolarizing direction. Decrease of [Ca(2+)](o) did not alter DAP significantly, suggesting a nonessential role of Ca(2+) in the DAP. Perfusion of tetrodotoxin (TTX; 0.1-1 microM) and replacement of extracellular Na(+) by choline(+) suppressed both spike height and DAP simultaneously. Replacement of extracellular Na(+) by Li(+) increased DAP and spike bursts, and caused a positive shift of the DAP10 reversal potential. It is suggested that Li(+) increased DAP by blocking an Na(+)-activated K(+) current. In summary, multiple K(+) conductances are normally active during the DAP following a single action potential.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have