Abstract
The emergence of social media has resulted in the generation of highly versatile and high volume data. Most web search engines return a set of links or web documents as a result of a query, without any interpretation of the results to identify relations in a social sense. In the work presented in this paper, we attempt to create a search engine for social media datastreams, that can interpret inherent relations within tweets, using an ontology built from the tweet dataset itself. The main aim is to analyze evolving social media trends and providing analytics regarding certain real world events, that being new product launches, in our case. Once the tweet dataset is pre-processed to extract relevant entities, Wiki data about these entities is also extracted. It is semantically parsed to retrieve relations between the entities and their properties. Further, we perform various experiments for event detection and trend analysis in terms of representative tweets, key entities and tweet volume, that also provide additional insight into the domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.