Abstract
Healthcare systems are at risk of collapsing unless significant structural and transformative measures are taken. Despite the global economy generating an additional 40 million jobs in the health sector by 2030, the World Health Organization projects a shortage of 9.9 million physicians, nurses, and midwives during the same period (WHO, 2016). The core of innovation in the healthcare industry lies in automation systems, particularly in the realm of image detection. As the ratio of healthcare workers to patients decreases, the integration of robotics and artificial intelligence plays a crucial role in bridging the gap. These technologies not only compensate for the declining workforce but also bring a level of accuracy and precision that eliminates the potential for human error in image detection processes. In this paper we focus on the COVID-19 pandemic that presents significant socio-economic challenges, impacting various aspects of daily life, including health, the economy, and social development. The need for chest X-ray (CXR) scans is rising due to pneumonia being a critical and common complication of COVID-19. Early detection and diagnosis are pivotal in curbing the spread of the virus, prompting the utilization of the reverse transcription polymerase chain reaction (RT-PCR) as the predominant screening technology. Nevertheless, the task's complexity, time-consuming nature, and reported insensitivity in this research emphasize the need for alternative approaches. CXR is a widely employed screening tool for lung-related diseases due to its straightforward and cost-effective application. In this paper, we have deployed different transfer learning methods to detect COVID-19 using chest X-ray images such as VGG19, ResNet-50, and InceptionResnetV2. The findings of our results indicate that the fine-tuned model utilizing the transfer learning and data augmentation techniques enhances the efficiency of COVID-19 detection. We performed a comparison of pre-trained networks and identified the InceptionResNetV2 model as having the highest classification performance with an accuracy of 97.33%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.