Abstract

Social Internet of Things (SIoT) integrates social network schemes into Internet of Things (IoT), which provides opportunities for IoT objects to form social communities. Existing social network models have been adopted by SIoT paradigm. The wide distribution of IoT objects and openness of social networks, however, make it more challenging to preserve privacy of IoT users. In this paper, we present a novel framework that preserves privacy against inference attacks on social network data through ranked retrieval models. We propose PVS, a privacy-preserving framework that involves the design of polymorphic value sets and ranking functions. PVS enables polymorphism of private attributes by allowing them to respond to different queries in different ways. We begin this work by identifying two classes of adversaries, authenticity-ignorant adversary, and authenticity-knowledgeable adversary, based on their knowledge of the distribution of private attributes. Next, we define the measurement functions of utility loss and propose PVSV and PVST that preserve privacy against authenticity-ignorant and authenticity-knowledgeable adversaries, respectively. We take into account the utility loss of query results in the design of PVSV and PVST. Finally, we show that PVSV and PVST meet the privacy guarantee with acceptable utility loss in extensive experiments over real-world datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.