Abstract

BackgroundUnderstanding context specific heat-health risks in urban areas is important, especially given anticipated severe increases in summer temperatures due to climate change effects. We investigate social inequalities in the association between daily temperatures and mortality in summer in the city of Turin for the period 1982–2018 among different social and demographic groups such as sex, age, educational level, marital status and household occupants.MethodsMortality data are represented by individual all-cause mortality counts for the summer months between 1982 and 2018. Socioeconomic level and daily mean temperature were assigned to each deceased. A time series Poisson regression with distributed lag non-linear models was fitted to capture the complex nonlinear dependency between daily mortality and temperature in summer. The mortality risk due to heat is represented by the Relative Risk (RR) at the 99th percentile of daily summer temperatures for each population subgroup.ResultsAll-cause mortality risk is higher among women (1.88; 95% CI = 1.77, 2.00) and the elderly (2.13; 95% CI = 1.94, 2.33). With regard to education, the highest significant effects for men is observed among higher education levels (1.66; 95% CI = 1.38, 1.99), while risks for women is higher for the lower educational level (1.93; 95% CI = 1.79, 2.08). Results on marital status highlighted a stronger association for widower in men (1.66; 95% CI = 1.38, 2.00) and for separated and divorced in women (2.11; 95% CI = 1.51, 2.94). The risk ratio of household occupants reveals a stronger association for men who lived alone (1.61; 95% CI = 1.39, 1.86), while for women results are almost equivalent between alone and not alone groups.ConclusionsThe associations between heat and mortality is unequal across different aspects of social vulnerability, and, inter alia, factors influencing the population vulnerability to temperatures can be related to demographic, social, and economic aspects. A number of issues are identified and recommendations for the prioritisation of further research are provided. A better knowledge of these effect modifiers is needed to identify the axes of social inequality across the most vulnerable population sub-groups.

Highlights

  • Understanding context specific heat-health risks in urban areas is important, especially given anticipated severe increases in summer temperatures due to climate change effects

  • The cumulative exposure-response association differentiated by sex (Fig. 1(b)) shows how the overall association between daily mean temperatures and mortality during summer months follow a U-shaped curve in both sexes, with representative mortality temperature (MMT) and Relative Risk (RR) values

  • As mentioned in the previous section, a representative MMT and a corresponding 99th RR for each sub-group differentiated by sex was detected. 95%

Read more

Summary

Introduction

Understanding context specific heat-health risks in urban areas is important, especially given anticipated severe increases in summer temperatures due to climate change effects. Severe increases in temperature are projected in Europe, with the highest levels of warming expected in Mediterranean regions during summer seasons [3, 9,10,11]. Is the country with the highest heat-related effects on daily mortality considering summer temperatures [12]. Studies over urban areas located in the northern regions of Italy highlighted how these specific areas reached the greatest excess in mortality due to heat in the past [13,14,15] and they are characterised by a strong positive association between the number of daily emergency visits [16] and daily mean air temperatures

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call