Abstract

Chemical communication mediates social interactions in insects. For the fruit fly, D. melanogaster, the chemical display is a key fitness trait because it leads to mating. An exchange of cues that resembles a dialogue between males and females is enacted by pheromones, chemical signals that pass between individual flies to alter physiology and behavior. Chemical signals also affect the timing of locomotor activity and sleep. We investigated genetic and environmental determinants of chemical communication. To evaluate the role of the social environment, we extracted a chemical blend from individual males selected from groups composed of one genotype and compared these extracts to those from groups of mixed genotypes. To evaluate the role of the physical environment, these comparisons were performed under a light-dark cycle or in constant darkness. Here, we show that chemical signaling is affected by the social environment, light-dark cycle, and genotype as well as the complex interplay of these variables. Gene-by-environment interactions produce highly significant effects on chemical signaling. We also examined individual responses within the groups. Strikingly, the response of one wild-type fly to another is modulated by the genotypic composition of his neighbors. Chemical signaling in D. melanogaster may be a "fickle" trait that depends on the individual's social background.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.