Abstract

A basilar property and a useful tool in the theory of Sobolev spaces is the density of smooth compactly supported functions in the space $W^{k,p}(\R^n)$ (i.e. the functions with weak derivatives of orders $0$ to $k$ in $L^p$). On Riemannian manifolds, it is well known that the same property remains valid under suitable geometric assumptions. However, on a complete non-compact manifold it can fail to be true in general, as we prove in this paper. This settles an open problem raised for instance by E. Hebey [\textit{Nonlinear analysis on manifolds: Sobolev spaces and inequalities}, Courant Lecture Notes in Mathematics, vol. 5, 1999, pp. 48-49].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.