Abstract

This paper studies Sobolev type inequalities on Riemannian manifolds. We show that on a complete non-compact Riemannian manifold the constant in the Gagliardo–Nirenberg inequality cannot be smaller than the optimal one on the Euclidean space of the same dimension. We also show that a complete non-compact manifold with asymptotically non-negative Ricci curvature admitting some Gagliardo–Nirenberg inequality is not very far from the Euclidean space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.