Abstract

In this study, the drying properties of onion slices were experimentally investigated under the different drying temperatures of 45, 50, 55, and 60°C for different thicknesses of 2, 3, 4, and 5mm. The drying characteristics of the onion slices were significantly influenced by drying temperature. Thin slices with higher temperature dried in the shortest time while thick slices with low temperature took longer to dry. In modeling drying curves, the moisture ratio values of the onion slices were compared with five models commonly used in the literature. In addition, Gene Expression Programming (GEP) was used to model the drying characteristics of the onion slices, and mathematical formulas were derived to calculate moisture ratio values. The results indicated that the moisture ratio values predicted by all models agreed with the experimental moisture ratio values for onion slice samples at different temperatures. The scientific findings we obtained here showed that the two model provided a better simulation of onion slice drying kinetics than other models in different experimental temperature and thickness ranges. Also, the GEP model was able to usefully determine the moisture ratio of onion slices with appropriate accuracy in a shorter time without the need for complicated formulas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call