Abstract

BackgroundLung cancer is an important and common cancer that constitutes a major public health problem, but early detection of small cell lung cancer can significantly improve the survival rate of cancer patients. A number of serum biomarkers have been used in the diagnosis of lung cancers; however, they exhibit low sensitivity and specificity.MethodsWe used biochemical methods to measure blood levels of lactate dehydrogenase (LDH), C-reactive protein (CRP), Na+, Cl-, carcino-embryonic antigen (CEA), and neuron specific enolase (NSE) in 145 small cell lung cancer (SCLC) patients and 155 non-small cell lung cancer and 155 normal controls. A gene expression programming (GEP) model and Receiver Operating Characteristic (ROC) curves incorporating these biomarkers was developed for the auxiliary diagnosis of SCLC.ResultsAfter appropriate modification of the parameters, the GEP model was initially set up based on a training set of 115 SCLC patients and 125 normal controls for GEP model generation. Then the GEP was applied to the remaining 60 subjects (the test set) for model validation. GEP successfully discriminated 281 out of 300 cases, showing a correct classification rate for lung cancer patients of 93.75% (225/240) and 93.33% (56/60) for the training and test sets, respectively. Another GEP model incorporating four biomarkers, including CEA, NSE, LDH, and CRP, exhibited slightly lower detection sensitivity than the GEP model, including six biomarkers. We repeat the models on artificial neural network (ANN), and our results showed that the accuracy of GEP models were higher than that in ANN. GEP model incorporating six serum biomarkers performed by NSCLC patients and normal controls showed low accuracy than SCLC patients and was enough to prove that the GEP model is suitable for the SCLC patients.ConclusionWe have developed a GEP model with high sensitivity and specificity for the auxiliary diagnosis of SCLC. This GEP model has the potential for the wide use for detection of SCLC in less developed regions.

Highlights

  • Lung cancer is a major cause of cancer death worldwide, representing about 12.7% (1.6 million cases) of all new cancer cases each year and 18.2% (1.4 million deaths) of all cancer deaths[1]

  • We repeat the models on artificial neural network (ANN), and our results showed that the accuracy of gene expression programming (GEP) models were higher than that in ANN

  • GEP model incorporating six serum biomarkers performed by non-small cell lung cancer (NSCLC) patients and normal controls showed low accuracy than Small cell lung cancer (SCLC) patients and was enough to prove that the GEP model is suitable for the SCLC patients

Read more

Summary

Introduction

Lung cancer is a major cause of cancer death worldwide, representing about 12.7% (1.6 million cases) of all new cancer cases each year and 18.2% (1.4 million deaths) of all cancer deaths[1] It has a poor prognosis, with a 15% 5-year survival rate, and more than 75% of patients are diagnosed at late stages of the disease[2,3]. Small cell lung cancer (SCLC) is one of the major types of lung cancer, with the highest degree of malignancy Current therapy methods, such as chemotherapy, radiotherapy, and surgery are very limited for the treatment of late stage SCLC. Lung cancer is an important and common cancer that constitutes a major public health problem, but early detection of small cell lung cancer can significantly improve the survival rate of cancer patients. A number of serum biomarkers have been used in the diagnosis of lung cancers; they exhibit low sensitivity and specificity

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call