Abstract

It is well-documented that photodissociation of SO2 at λ = 193 nm produces O(3Pj) + SO X(3Σ-). We provide experimental evidence of a new product channel from one-photon absorption producing S(3Pj) + O2 X(3Σg-) in 2-4% yield. We probe the reactant and all products with time-resolved photoelectron photoion coincidence spectroscopy. High-level ab initio calculations suggest that the new product channel can only occur on the ground-state potential energy surface through internal conversion from the excited state, followed by isomerization to a transient SOO intermediate. Classical trajectories on the ground-state potential energy surface with random initial conditions qualitatively reproduce the experimental yields. This unexpected photodissociation pathway may help reconcile discrepancies in sulfur mass-independent fractionation mechanisms in Earth's geologic history, which shape our understanding of the Archean atmosphere and the Great Oxygenation Event in Earth's evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.