Abstract

Four commercial lipase preparations immobilized by covalent attachment on epoxy-polysiloxane-β-cyclodextrin were tested as potential biocatalysts to mediate the esterification reaction of isopentanol with caprylic acid in solvent-free medium. Among them, the immobilized lipase from Rhizopus oryzae was the most active biocatalyst, attained ester conversion higher than 80% in 24 h, being selected for subsequent tests using fusel oil as source of isopentanol. An experimental design was performed and the analysis of the results revealed that the formation of the isopentyl caprylate was strongly influenced by the variable molar ratio at 95% of confidence level. The proposed mathematical model allowed predicting that the excess of caprylic acid (molar ratio fusel oil to acid of 1:1.5) and reaction temperature of 45 oC favor the reaction to attain high ester conversion. Sensory evaluation of the flavors profile in relation to all the components involved in the reaction (caprylic acid, fusel oil and esters) showed that the formed esters had distinct aromas from the starting materials, confirming that the changes in flavors occurred before and after esterification reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call