Abstract

Increasing SNP density by incorporating sequence information only marginally increases prediction accuracies of breeding values in livestock. To find out why, we used statistical models and simulations to investigate the shape of distribution of estimated SNP effects (a profile) around Quantitative Trait Nucleotides (QTN) in populations with a small effective population size (Ne). A QTN profile created by averaging SNP effects around each QTN was similar to the shape of expected pairwise linkage disequilibrium (PLD) based on Ne and genetic distance between SNP, with a distinct peak for the QTN. Populations with smaller Ne showed lower but wider QTN profiles. However, adding more genotyped individuals with phenotypes dragged the profile closer to the QTN. The QTN profile was higher and narrower for populations with larger compared to smaller Ne. Assuming the PLD curve for the QTN profile, 80% of the additive genetic variance explained by each QTN was contained in ± 1/Ne Morgan interval around the QTN, corresponding to 2 Mb in cattle, and 5 Mb in pigs and chickens. With such large intervals, identifying QTN is difficult even if all of them are in the data and the assumed genetic architecture is simplistic. Additional complexity in QTN detection arises from confounding of QTN profiles with signals due to relationships, overlapping profiles with closely-spaced QTN, and spurious signals. However, small Ne allows for accurate predictions with large data even without QTN identification because QTN are accounted for by QTN profiles if SNP density is sufficient to saturate the segments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call