Abstract
Seasonal forecasting systems still have difficulties predicting temperature over continental regions, while their performance is better over some maritime regions. On the other hand, the land surface is a substantial source of (sub-)seasonal predictability. A crucial land surface component in focus here is the snow cover, which stores water and modulates the surface radiation balance. This paper’s goal is to attribute snow cover seasonal forecasting biases and lack of skill to either initialization or parameterization errors. For this purpose, we compare the snow representation in five seasonal forecasting systems (from DWD, ECMWF, Météo-France, CMCC, and ECCC) and their performances in predicting snow and 2-m temperature over a Siberian region against ERA5 reanalysis and station data. Although all systems use similar atmospheric and land initialization approaches and data, their snow and temperature biases differ in sign and amplitude. Too-large initial snow biases persist over the forecast period, delaying and prolonging the melting phase. The simplest snow scheme (used in DWD’s system) shows too-early and fast melting in spring. However, systems including multi-layer snow schemes (Météo-France and CMCC) do not necessarily perform better. Both initialization and parameterization are causes of snow biases, but, depending on the system, one can be more dominant.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have