Abstract

AbstractDespite a variety of efforts made to measure snow accumulation at the South Pole (SP), snow accumulation changes and their mechanism have not yet been fully explained. Here, SP stake farm measurements, global sea surface temperature observations, and atmospheric circulation data from European Centre for Medium‐Range Weather Forecasts Reanalysis version 5 were used to investigate the annual and seasonal snow accumulation changes at the SP during 1983–2020, and their association with central tropical Pacific Sea surface temperature variations. SP annual snow accumulation decreased significantly for the 1983–2007 period at a rate of −39.7 ± 1.4 mm decade−1, but switched to a dramatically positive trend during 2008–2020 (108.7 ± 2.7 mm decade−1), with the strongest increase in the austral autumn. The switch to a dramatically upward trend can largely be attributed to a cyclonic anomaly over the South Atlantic and an anticyclonic anomaly over the Drake Passage, causing the enhanced advection of warm and wet air into the SP. These circulation patterns were generated by an atmospheric Rossby wave train forced by rapid warming in the central tropical Pacific during 2008–2020.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call