Abstract

Many real-world machine learning problems are challenging to tackle for two reasons: (i) they involve multiple sub-tasks at different levels of granularity; and (ii) they require large volumes of labeled training data. We propose Snorkel MeTaL, an end-to-end system for multi-task learning that leverages weak supervision provided at multiple levels of granularity by domain expert users. In MeTaL, a user specifies a problem consisting of multiple, hierarchically-related sub-tasks-for example, classifying a document at multiple levels of granularity-and then provides labeling functions for each sub-task as weak supervision. MeTaL learns a re-weighted model of these labeling functions, and uses the combined signal to train a hierarchical multi-task network which is automatically compiled from the structure of the sub-tasks. Using MeTaL on a radiology report triage task and a fine-grained news classification task, we achieve average gains of 11.2 accuracy points over a baseline supervised approach and 9.5 accuracy points over the predictions of the user-provided labeling functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.