Abstract
Traditional CRM models often ignore the correlation that could exist among the purchasing behavior of surrounding prospects. Hence, a generalized linear autologistic regression model can be used to capture this interdependence and improve the predictive performance of the model. In particular, customer acquisition models can benefit from this. These models often suffer from a lack of data quality due to the limited amount of information available about potential new customers. Based on a customer acquisition model of a Japanese automobile brand, this study shows that the extra value resulting from incorporating neighborhood effects can vary significantly depending on the granularity level on which the neighborhoods are composed. A model based on a granularity level that is too coarse or too fine will incorporate too much or too little interdependence resulting in a less than optimal predictive improvement. Since neighborhood effects can have several sources (i.e. social influence, homophily and exogeneous shocks), this study suggests that the autocorrelation can be divided into several parts, each optimally measured at a different level of granularity. Therefore, a model is introduced that simultaneously incorporates multiple levels of granularity resulting in even more accurate predictions. Further, the effect of the sample size is examined. This shows that including spatial interdependence using finer levels of granularity is only useful when enough data is available to construct stable spatial lag effects. As a result, extending a spatial model with multiple granularity levels becomes increasingly valuable when the data sample becomes larger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.